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Numerical solutions to the steady two-dimensional compressible Euler equations
corresponding to a compressible analogue of the Mallier & Maslowe (Phys. Fluids,
vol. A 5, 1993, p. 1074) vortex are presented. The steady compressible Euler equations
are derived for homentropic flow and solved using a spectral method. A solution
branch is parameterized by the inverse of the sound speed at infinity, ¢!, and the
mass flow rate between adjacent vortex cores of the corresponding incompressible
solution, €. For certain values of the mass flux, the solution branches followed
numerically were found to terminate at a finite value of ¢!. Along these branches
numerical evidence for the existence of extensive regions of smooth steady transonic

flow, with local Mach numbers as large as 1.276, is presented.

1. Introduction

In the spirit of Moore & Pullin (1987, 1998) and Meiron, Moore & Pullin (2000)
we study the effect of compressibility on steady incompressible vortical solutions
of Euler’s equations in two dimensions. In particular, we seek continuous solution
branches corresponding to smooth transonic flow, in contrast to Morawetz (1956,
1957, 1958) who showed that for flow past airfoils, solutions corresponding to
smooth transonic flow, if they exist, must be isolated. By ‘continuous solution
branches’ we mean that there exist admissable solutions in an arbitrarily small neigh-
bourhood surrounding a particular solution in the space of the appropriate controlling
parameters. In the present work we investigate the effects of compressibility on the
Mallier & Maslowe vortex. Our formulation and solution method is based on Meiron
et al. (2000, henceforth referred to as MMP), who found small regions of smooth
transonic flow in the parameter space of their compressible extension of the Stuart
(1967) vortex.

Mallier & Maslowe (1993, henceforth referred to as MM), proposed an exact
nonlinear steady solution to the incompressible two-dimensional Euler equations,
representing a periodic row of counter-rotating vortices. The periodic direction will
be denoted x, with y as the transverse coordinate. In dimensionless coordinates, for
steady two-dimensional inviscid incompressible flow the velocity field, u(x, y), and
vorticity, w(x, y), may be represented using a stream function yr(x, y):

_dy oy
oy’ o’
The vorticity is chosen to be a function of ¢ alone, which satisfies the requirement

w=—-V*y. (1.1)

u
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that any steady solution of the incompressible Euler equations has constant vorticity
along pathlines. The MM vortex corresponds to the choice

w:—W¢=§%gm@m, (1.2)

where 1 <k < o0 is a parameter defining the family. This is a form of the sinh-Gordon
equation (the Stuart 1967 solution satisfies Liouville’s equation) where the family of
exact solutions is given by

Kk cosh <$y> — k2 —1cos(x)
Yo(x, y) = log —
k cosh < = 1y> + k% — 1cos(x)

K

(1.3)

By construction the flow is 2n-periodic in x, and the total circulation, I',, associated
with each vortex is independent of x and equal to 4m. As « increases the core size
decreases, implying that the maximum vorticity must increase to conserve circulation.
When « — o0, 1y can be shown to describe the potential flow produced by an array
of counter-rotating point vortices, while x =1 represents fluid at rest. The mass flow
rate, €, between adjacent vortices can be defined in terms of «,

€ = Yo(m, 0) — ¥o(0,0) = 4log (k + k2 —1) =« =cosh (ie), (1.4)

where 0 <e < 0.

2. Compressible formulation and numerical solution
2.1. Formulation

The governing equations are the compressible steady Euler equations in two space
dimensions. We assume a calorically perfect gas with constant specific heats ¢, and
cp. Using * to denote a dimensional quantity, p), to denote the constant density
as |y| —» oo and [* as a characteristic vortex length scale, the reference pressure is
pr= u’;2p;, with the characteristic vortex velocity defined as u, =1"/(I"T,). I, is the
dimensionless circulation of an individual vortex, which is to be held constant by
construction. In the following, fluid quantities are made non-dimensional with respect
to these reference values. The dimensionless speed of sound is ¢, =(y pw/p)?
where p., p, are the dimensionless pressure and density respectively as |y| — oo.
Following MMP, the main idea is to write the steady Euler equations in terms of a
stream function ¥ (x, y) defined by

= %, pv=—%, (2.1)

dy ax

and density, p(x, y). For steady, plane compressible flow the {—w relationship is

ou

1 1
w(x,y) = > Vi + o (Vi - Vp). (2.2)

The entropy equation is satisfied by S = S(y). This restricts the MMP formulation to
shockless flow but does not preclude smooth transonic flow. Using the total enthalpy

1 c2 p
H=-uw+_ = P (2.3)
2 yv—1p
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and the ideal-gas equation of state, the momentum equation can be written as

2
@xUu=—VH+ 2 _TVs. (2.4)

vy —1
Closure requires specification of S(y) and H(y¥). We consider homentropic flow
(S = const) and choose a functional form for w which yields MM’s solution as ¢! — 0,

w

) 2cosh2( ) sinh(2uy), (2.5)
where p and I, are parameters to be determined. When ¢! — 0 we require u — 1
and I, — 1 so that (2.5) reduces to (1.2). The parameter u is necessary for well-
posedness, while I, is a construction parameter introduced so that the circulation can
be held constant. From (2.2), (2.3), (2.4), and (2.5), a pair of closed equations can be
obtained:

20 l . ,OZF
VY (vw Vp) = ~JoostZ (1e) B (Le) sinh(2u), (2.6)
0 (py '—1) p*T. B
(Vl/f) + T T 3 cosh? (19) (1 — cosh(uy)). (2.7)

On the semi-infinite rectangle, Z={(x,y) : 0<x<m, 0<y<oo}, the boundary
conditions are

9

W0 on (y=0.0<x<m)

dy

oY

8—=0 on (x=0,andx =m,0<y < w), (2.8)
X

v —>0 as y—oo, 0<x<m,
p—1 as y— o0, 0<x<m,

Characterizing solutions to (2.6)—(2.7) requires two further conditions. The first is
a constraint on the total dimensionless circulation,

/ olx, y)| dx dy = / plx. y)|sinh Qup(x, y))| dxdy = 4z, (29)
7 2

I
2 (1
2 cosh (Ze)
The second is a constraint on ¥ and can be formulated in many ways. Here we define
a two-parameter family of solutions by writing the mass flux in the form

Y(m, 0) — ¥ (0,0) =€l € =4log(k + xk2 —1). (2.10)

Comparing (2.10) with (1.4) shows that, when ¢! >0, € is no longer the mass flux.
We nonetheless retain €, or more particularly « “defined by (2.10), as a convenient
parameter characterlzlng solutions to (2.6)—(2.7). The unknowns are ¥ (x, y;c!, k),
o(x,y;czt k), u(c!, «), and I.(c;', k). Hence on a branch along which « is held
constant and ¢! increases, the mass flux e(«) x I'.(c;!, k) in general varies. We remark
that different right-hand sides of (2.10) generate alternative families of solutions. The
present continuation is of interest because it is found to produce solutions containing
extensive regions of plane transonic flow.
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K =0)—1.0| |1k, ¢ =0) — 1.0]
1.10 9.441 x 1076 9.430 x 1076
1.50 5.076 x 1076 5.075 x 1076
2.00 2.855 x 107° 2.854 x 1076
3.00 1.456 x 1076 1.272 x 107°
5.00 5.068 x 1073 1.288 x 1073

TaBLE 1. Error in the circulation constraint parameter, ., and the nonlinear eigenvalue, w:
[M, N1 =60, 60].

2.2. Numerical method

A spectral collocation method, similar to that used by MMP was employed to solve
the boundary-value problem defined by equations (2.6), (2.6), (2.9) and (2.10). To
start, ¥ and p are written as

N—-1M-1

1/f Z Z Amn COS(mX)szn(y),
o m= (2.11)

1M—1

=1 + Z n COS(MX ) D2, (¥),

n=0 m=0

where a,,, and b, are coeflicients to be determined. The functions @,(y) are basis
functions, which decay as y — co. The interval 0 <Y < 1 was stretched onto 0<y < o0
using the algebraic stretching, ¥ =y/+/n? + y2, where n is the stretching parameter.
The functions @,(y) are combinations of Chebyschev polynomials satisfying the
boundary conditions. Letting ¢,(y(Y))=T,(Y), then @,(y)=d¢o(y) — ¢,12(y). The
collocation points are (x;, y(¥;)), i=1,...M, j=1,...N, where x; are the zeros of
cos(Mx) between 0 and wt, and Y; are the zeros of T>y(Y) between 0 and 1. Equations
(2.11) were substituted into each of (2.6) and (2.7) and satisfied at the collocation
points. This combined with equation (2.9) and (2.10) yielded 2 x M x N + 2 nonlinear
equations for the 2 x M x N + 2 unknowns a,,,,, b,.., 0 and I'.. These equations were
solved by a standard Newton method with analytical evaluation of the Jacobian,
which was full. Numerical solutions reported have residuals less than 1071,

3. Compressible Mallier & Maslowe vortex
3.1. Continuation to finite c,,

To continue the MM vortex to finite ¢, « was fixed and a numerical solution ob-
tained for ¢! =0 by using as an initial approximation a set of coefficients a,,, cal-
culated using equation (1.3), b,,, =0, u =1 and I', = 1. The spectral solutions reported
use [M, N]=[40,40], [60, 60], n=1.5. The accuracy of the method was tested by
comparing numerical results with the analytical solution at ¢ ;! =0, shown in table 1.

Solutions were obtained with « =1.10, 1.50, 2.00, 3.00, 5.00, over a range of c
varying from ¢! =0 to a maximum value, which will be addressed later. Figure 1
shows contour plots of ¥ and wy for the incompressible MM vortex at « = 5.0, and
plots of ¥, @, p and V- u for the compressible MM vortex at k =5.0 and ¢! =0.325.
There is a striking difference between the incompressible and compressible stream
functions and vorticity. In particular, increasing compressibility increases the strain
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(@ min=-4.549, max = 4.549 (b) min =-85.053, max = 85.053

_2’ ! ! ! ! ! ! _2’ ! ! ! ! ! !

FIGURE 1. Incompressible MM vortex; «k =5.0, ¢! =0: (a) stream function, (b) vorticity.

Compressible MM vortex; k = 5.0, ¢;;! =0.325: (c) stream function, (d) vorticity, (e) density,
(f) dilatation.

rate inside the vortex cores, which in turn stretches the vortices substantially in the
transverse direction. Indeed, the ratio of minor to major axes increases by at least a
factor of five from its incompressible value over the range of x investigated. The local
Mach number, M;, is defined as

My — ((aw/axV + (aw/ay)z) "

=c, s (3.1)
The maximum Mach number, M,,.., occurs on the symmetry line, y =0, near the vor-
tex core boundary where the vertical velocity is maximum, figure 2. The overall effect
of increasing compressibility on the MM vortex, at fixed «, is shown in figures 3-5.
Plotted are u(c;!, k) and I.(c;!,«) in figures 3(a) and 3(b), 2s(nm, 0)/w(nt, 0) and
M,,., in figures 4(a) and 4(b), where s(nm, 0) is the strain rate at a vortex core, and
finally p(nm, 0) and w(m, 0) in figures 5(a) and 5(b).
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min =0.000, max =1.029
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FIGURE 3. Solution parameters. (@) Nonlinear eigenvalue u versus ¢;!. (b) Circulation
constraint I, versus c;l. x =1.10, 1.50, 2.00, 3.00, 5.00, « increasing right to left.
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FIGURE 4. (a) Normalized strain versus c!. (b) M., versus ¢;'. Values of « as in figure 3,
Kk increasing bottom to top in (a), and right to left in (b).
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FIGURE 5. () Minimum density versus c¢;!. (b) Maximum vorticity versus c¢!. Values of k as
in figure 3, increasing top to bottom in (a) and bottom to top in (b).

Increasing ¢! decreases I, figure 3(b), which in turn decreases the effective
mass flow rate between the vortex cores. This leads to a very large increase in the
absolute value of the normalized strain, figure 4(a), and so the vortices are stretched
substantially in the vertical direction. Figure 5(b) shows that the maximum value of
vorticity, which is realized at the vortex cores, also decreases as ¢! is increased. To
maintain a constant circulation, the vortex cores become less compact, which causes
the low-density region inside the vortex cores to extend into the high-velocity region
between the cores, thereby increasing the maximum local Mach number.

Figure 4(b) shows that the onset of locally smooth supersonic flow depends on «.
At low vales of «, the flow remains entirely subsonic, and the bound |[s(nm, 0)/
%a)(nn,O)\ <1, necessary for the streamlines to remain elliptical, is close to being
violated. Indeed for ¥ =1.10, ¢! =2.00, s(nm, 0)/%w(nn, 0)=—0.993. In this regime
€ is small, so that increasing compressibility causes the effective mass flux, € x I,
to tend to zero. The vortices become weak and less compact, so that this solution
branch asymptotes to quiescent flow. For large values of « above a critical ¢!, the
value of which depends on k, the solutions admit the existence of smooth regions of
supersonic flow.

3.2. Spectral convergence

To address the question of convergence, the decay of the coefficients a,,, and b,,, with
respect to m was examined. The magnitude of the coefficients was assumed to have
an exponential form:

|@mn| ~ €Xp (ozm (n;/c, c;l)m), [Dyun| ~ €Xp (ﬂm (n;K, c;l)m), (3.2)

with n fixed. Exponential convergence is lost when any of the exponents pass through
zero: «,, =0 or B, =0. Least-squares fits of log(|a,,,|) and log(|b,,,|) versus m were
made for several values of n. The slopes of these fits give estimates of «,, and B,,
thus yielding a criterion for when convergence is lost. In general, a solution branch
is said to terminate when the Newton method fails to find converged solutions
along a particular branch. Nevertheless, for small values of « the convergence of
the spectral series is not lost along a particular branch. These branches asymptote to
quiescent flow. Arc-length continuation in the space of all unknowns, with fourth-order
extrapolation in arc-length to estimate the next approximation, was employed to
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(2) Mz = 1.029 (b) Myya = 1.276
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FIGURE 6. k =5.00. Heavy solid line: sonic line, M; =1.0. The flow contained in this region is
supersonic. Dashed contours: stream function. Solid, labelled contours: density. (a) ¢! = 0.325.
(b) ¢} =0.342.

ensure that branch termination was genuine, and not a result of continuing in ¢
Following MMP we interpret branch termination as incipient shocklet formation, in
which case equations (2.6) and (2.7) are no longer valid because entropy cannot then
be single valued on a spatially periodic domain.

3.3. Transonic flow

Large ranges of ¢! and « were found which yield solutions showing smooth regions

of supersonic flow, figure 4(b). For x =5.0 the numerical solutions show the onset
of transonic flow for ¢! in the range 0.319 to 0.342. Three-point interpolation gives
M, =1.00 at ¢! =0.3187. At ¢! =0.342, M,,, =1.276. For this value of x no
solutions were found at greater ¢! displaying exponential decay of the spectral
coefficients.

Figure 6 shows contours of ¥ and p windowed on the supersonic region, which is
of sizable extent. The low vortex core density bulges into the supersonic region, so
that on following a streamline we see a substantial decrease in density, followed by a
matching increase to preserve symmetry about the x-axis. Similar plots of V-u show
that these large density gradients cause the magnitude of the dilatation to increase,
and show steep gradients inside the sonic bubble. After MMP, we postulate that this
may indicate that at larger values of ¢! incipient weak shocks would form, which
would cause convergence failure of the cosine series. The bulging core density field
is a direct result of allowing the mass flux to vary along a solution branch. This
allows regions of low sound speed and high velocity to intersect, thereby producing
supersonic values of the local Mach number. The rotational character of the present
Mallier & Maslowe vortex flow may explain the apparent non-conformity with the
results of Morawetz (1956, 1957, 1958).

4. Concluding remarks

Spectrally accurate numerical solutions to the steady compressible two-dimensional
Euler equations, representing a continuation to finite c,, of the Mallier & Maslowe
(1993) vortex, have been obtained. As in Meiron et al. (2000) an eigenvalue was
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introduced into the vorticity—density—stream-function relationship to continue the
MM vortex to the compressible regime. Unexpectedly, it was also required that
an extra parameter, I',, be intercalated so that the circulation constraint could
be enforced. Its value was determined as part of the overall solution, and was
seen to vary with both mass flux between the vortex cores, and the sound speed
at infinity. Increasing compressibility was seen to appreciably increase the aspect
ratio of the vortices, while reducing the minimum value of density at the vortex
core. Numerical evidence was presented for the existence of a substantial range
of free-stream sound speeds over which, at fixed «, the solution corresponded to
smooth transonic flow. For « = 5.00, regions of shock-free supersonic flow were found
between 0.319 < ¢! <0.342. Branch termination is attributed to the large vertical
dilatational gradients inside the locally supersonic region. This may indicate the
incipient formation of weak shocks which cannot be accommodated within our
formulation. The present study has focused on the existence of solution branches
containing regions of smooth transonic flow. The stability of these steady solutions is
unknown although we note that Julien, Chomaz & Lasheras (2002) have shown that
the limiting incompressible MM vortex admits several classical instability modes.

The notable feature of the present class of solutions is the surprisingly large local
Mach numbers reached prior to branch termination. We remark that this homentropic
continuation of the MM vortex to the compressible regime is not unique. Homentropic
solution branches may be constructed with very different properties to those reported
here. A formulation where the mass flux was held constant along a solution branch
was also investigated, that is, replacing the right-hand side of (2.10) by €. With these
equations the vortices became more intense and compact as ¢! was increased. At
fixed mass flux all solution branches followed were found to exhibit small regions
of locally supersonic flow prior to branch termination but the maximum local Mach
numbers were substantially smaller and closer to unity than those maxima found for
the homentropic continuation described in detail here. Additionally, homenthalpic
continuations may be constructed but these have not been investigated in detail.

Finally, it may be possible to formulate interesting variations on the compressible
MM vortex proposed here, for example bifurcation to solutions which enable the
stagnation points at the vortex cores to become hyperbolic, or formulations for which
symmetry about the x-axis is not enforced. A possible bifurcation to a non-symmetric
states may admit larger regions of locally supersonic flow before solution branch
termination than those found here.

This work was supported by the Advanced Simulation Computing program (ASC)
under subcontract no. B523297 of DOE contract W-7405-ENG-48.
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